

CO₂ capture behind the waste incineration plants – status quo and outlook

Rudi Karpf

Technical University Mittelhessen

ete.a Ingenieurgesellschaft für Energie und Umweltengineering & Beratung mbH

14th Specialized International Conference Waste to Energy 2023
28. and 29. March | Prague (Cz)

Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety

Climate Action Plan 2050

Principles and goals of the German government's climate policy

ete.a

.**) E** fe Science Engineering

Motivation for CO₂-Capture

Challenge – to counteract the effects of the climate change

Method - the reduction of the greenhouse gas emissions

- The Paris Climate Agreement and the Green Deal form the legal framework
- The goal for Germany CO₂-neutrality by 2045
- Inclusion of waste incineration in the Fuel Emissions Trading Act (BEHG) from 01.01.2024

ete.a

Total maximum CO₂ capture capacity of commercial CCS/CCUS projects worldwide

Source: Baker Hughes Company,2020

Status and utilisation behind the waste incineration plants

Process path

Source: Maun, A.: Optimierung von Verfahren zur Kohlenstoffdioxid-Absorption aus Kraftwerksrauchgasen mithilfe alkalischer Carbonatlösungen. Dissertation an der Universität Duisburg-Essen, 2013

im Bereich von Energiewirtschaft und Industrie. Berlin: Springer-Verlag; 2015

ete.a

Amine-Scrubber does have the highest TRL (Technology readiness level) of 9

$$\begin{split} & \text{R-NH}_{2\,(aq)} + \text{CO}_{2\,(aq)} + \text{H}_2\text{O} \leftrightarrow \text{R-NH}_{3^+(aq)} + \text{HCO}_{3^-(aq)} & \text{Primary Amine} \\ & \text{R}_1\text{R}_2\text{-}\text{NH}_{(aq)} + \text{CO}_{2\,(aq)} + \text{H}_2\text{O} \leftrightarrow \text{R}_1\text{R}_2\text{-}\text{NH}_{2^+(aq)} + \text{HCO}_{3^-(aq)} & \text{Secondary Amine} \end{split}$$

ete.a

Different types of Amines used in Amine-Scrubber

Types of Amines	Primary	Secondary	Tertiary	Sterically hindered
Example	MEA Monoethanolamine	DEA Diethanolamine	TEA Triethanolamine	HALS hindered amine light stabilizers
Chemical formula	H ₂ N—R ₁ classical Amine	R ₁ —N—R ₂ I H	R ₁ —N—R ₂ I R ₃	energetically optimised Amine
Characteristics				
CO ₂ -load / capacity	low	high / moderate	high	high
Enthalpy of reaction	high	moderate	low	moderate / low
Reaction rate	very high	moderate	low	moderate
Enthalpie of evaporation	high	moderate	low	low
Decomposition	high	moderate	low	moderate / low
Corrosivity	high	moderate	low	moderate / low

Characteristic data of technical Alkanolamine-Scrubbers

Process	MEA	DEA	Sulfinol D/M/X	MDEA	aMDEA
Composition of the washing liquid	MEA (< 30 Ma%) in H ₂ O	DEA (< 30 Ma%) in H ₂ O	Sulfolan (40 Ma%) + (MDEA/)DIPA (40 Ma%) + Water	MDEA _{aq} (< 55 Ma%)	MDEA (< 55 Ma%); Piperazin (< 10 Ma%) in H ₂ O
Manufacturer	DOW (free)	SNEA	Shell	e.g. BASF (OASE)	e.g. BASF (OASE)
Operating pressure p _{Absorber} ; p _{Desorber} [bar a]	> 1; ca. 5	> 1; ca. 4	> 20 bar; ca. 4	> 1; ca. 2	> 1; ca. 2
Operating temperature T _{Absorber} ; T _{Desorber} [°C]	ca. 30; 160	> 30; 140	35 140	4060; 120	> 35; 120
Primary energy demand e _{prim} [kWh/m³ _{CO2} (NTP)]	1,6 - 3,0	1,4 – 1,9	1,1 – 1,9	1,1	- 1,8

Decomposition of MEA [Jenkins 2002, Amine Best Practise Group 2007]

Trigger	Product of the decomposition	Characteristics
0 ₂	Carboxylic acid (acetic acid, formic acid)	intermediate product
SO _x , NO ₂ , Na, Cl, …	HSS: formate, acetate, sulfate	corrosive, irreversible
Acetic acid	Ethylenediaminetetraacetic acid (C ₁₀ H ₁₆ N ₂ O ₈)	complexing agent, "Ferrous-pump"
CO ₂	Hydroxyethylethylendiamin (HEED)	corrosive, irreversible
HEED	Ethylendiamin (C ₂ H ₈ N ₂)	polymer, irreversible

The detergent losses in the MEA-Scrubber are appr. between 1,4 and 2,4 kg/t_{CO2 separated}

Balancing

Energy demand and CCU

ete.a

Retrofits and energy demand

CHULE MITTELHESSEN

-

ete.a

Balancing - CCU

For the balancing the following parameters was considered for wte plant

Parameter	Unit	Value
Waste amount	t/h	17,4
Lower calorific value	MJ/t	10.800
Biogenic share	Ma%	50
Carbon content	Ma%	25
Volume flow (dry)	m³/h (i.N., tr.)	82.357
Humidity	Vol%	12
Volume flow (wet)	m³/h (i.N., f.)	93.588
CO ₂ -concentration	Vol% (tr.)	9,9
O ₂ -concentration	Vol% (tr)	9,1
Combustion energy	MWh _{th} /h	52,2
Efficiency of the steam generation	%	87
Efficiency of the condensing turbine	%	20 - 25
Electrical energy	MWh _{el} /h	9,1 - 11,4

Balancing - CCU

The following parameters for the Amine-Scrubber were considered:

Ammonia-Scrubber	Unit	Value	
CO ₂ -separation performance	%	90	
Separated CO ₂ -mass flow	t/h	14,3	
Emitted CO ₂ -mass flow	t/h	1,6	
Spec. Detergent load	m³ CO ₂ /t (i.N. tr)	50	
Time of circulation	h	0,5	
Needed amount of detergent	t	80,6	
Losses of Amine	kg /h	5,74	
Energy demand for the regeneration	MWh _{th} /h	11,2	
Auxiliary energy for pumps etc.	MWhel/h	0,014	

One-step synthesis of a methanol via catalytic fixed-bed reactor

 $3 H_2 + CO_2 \rightleftharpoons CH_3OH + H_2O$

Methanol-synthesis	Unit	Value
Stoichiometrical amount of methanol produced	kg CO ₂ /kg MeOH	1,4
Pot. Generated methanol mass flow	t MeOH/h	10,6
Heat of reaction	MWh _{th} /h	8,2

Balancing - CCU

H₂-Electrolysis

Methanol-synthesis	Unit	Value
H ₂ -volume flow	m³/h (i.N., tr.)	21.759
spec. Energy demand PEM Electrolysis	MWh _{el} / m³ (i.N., tr.)	0,005
Energy demand for PEM Electrolysis	MWh _{ei} /h	104,4
Energy demand for desalination	MWh _{el} /h	0,07
Demand of auxiliary energy	MWh _{el} /h	15,8
Total amount of the electrical energy		120 E
demand		120,5

Conclusions

O fu

ete.a

Optimised flue gas treatment in adaption to the future energy market

FRANKFURTER ALLGEMEINE ZEITUNG

07. Februar 2023, Seite 18

Dänemark erteilt Zulassung für C02-Lagerung in Nordsee

13 Millionen Tonnen sollen jährlich verschwinden.

dpa-AFX KOPENHAGEN Danemark hat die ersten Zulassungen für Unternehmen erteilt, die in größerem Umfang CO2 unter dem Meeresgrund der Nordsee einlagern können. Entsprechende Genehmlgungen gingen an den französischen Mineralölkonzern Totalenergies sowie ein Konsortium, bestehend aus der britischen Chemie-Holding Ineos sowie dem deutschen Gas- und Olproduzenten Wintershall Dea, einer Tochtergesellschaft des Chemiekonzerns BASE Dies teilte das dänische Energie-, Versorgungs- und Klimaministerium am Montag mit. Mit Erteilung der Zulassungen könnten die Arbeiten nun sofort beginnen. Im Rahmen der beiden Projekte sollen nach aktuellen Berechnungen ab dem Jahr 2030 jedes Jahr bis zu 13 Millionen Tonnen Kohlendioxid unter dem dänischen Teil der Nordsee eingelagert werden können

Die dänische Energiebehörde hat dem Ministerium nach eigenen Angaben empfohlen, diese ersten Zulassungen zur Erforschung einer umfangreicheren Lagerung von CO, unter der Nordsee an die besagten Unternehmen zu vergeben. Es handle sich um einen wichtigen Schritt, um Dänemarks CCS.Strategie zu verwirklichen, erklärte die Behörde. CCS steht für "Carbon capture and storage". Dabei handelt es sich um die Abscheidung und Speicherung von ausgestoßenem CO,, das durch diesen Prozess eingefangen und l!nter die Erde gepumpt wird.

Das Projekt von Totalenergies trägt den Namen Bifrost, benannt nach der mythischen Regenbogenbrücke, die das Reich der nordischen Götter mit dem der Menschen verbindet. Das Konsortium von Ineos und Wintershall Dea heißt Greensand und hatte von der Energiebehörde schon vor zwei Monaten die Zustimmung zu einem Pilotprojekt zur Lagerung von bis zu 15 000 Tonnen C 0₂ in einem ehemaligen Ölfeld erhalten.

Conclusion

- The technology for the CO₂-Capture is available and reliable
- Many processes for CO₂-Capture are still in development post-combustion to oxyfuel processes
- In Waste incineration the CC (Carbon Capture) is possible without any external energy input
- CCU depends quite a lot from the selected synthesis path, and above of all on the provision of the amount and price of the electrical energy!
- CCS is not yet accepted in Germany (Oxyfuel in Lausitz). Possible utilisation options could be offered via European strategy.

without STORAGE NO CC is possible!

Thank you for your attention!

