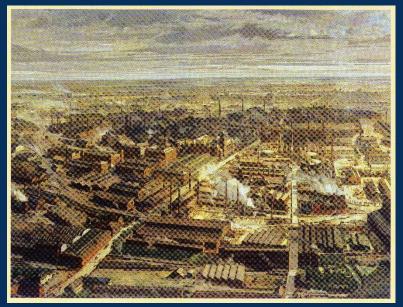
Significance of and challenges for flue gas treatment systems in waste incineration

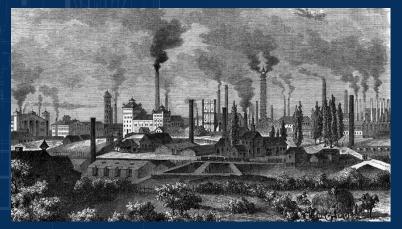
Rudi Karpf

ete.a Ingenieurgesellschaft für Energie und Umweltengineering & Beratung mbH

Technical University Mittelhessen

12th Specialized International Conference Waste to Energy 2021 23. and 24. August, Prague (Cz) – Clarion Congress Hotel Prague


ete.a



Source: wordpress

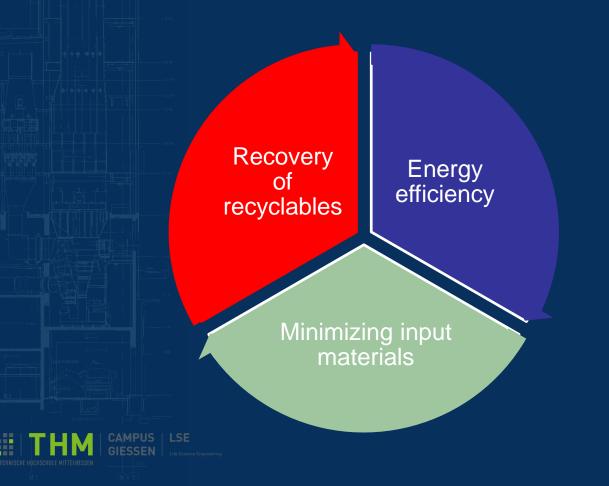
Source: Coalbrookdale at night from Philipp Jakob Loutherbourg der Jüngere 1801

Source: ARD-Wissen-Natur; 4. March 2014

Significance of flue gas treatment

Source: Handelsblatt 25. Oct. 2015

Motivation and Background



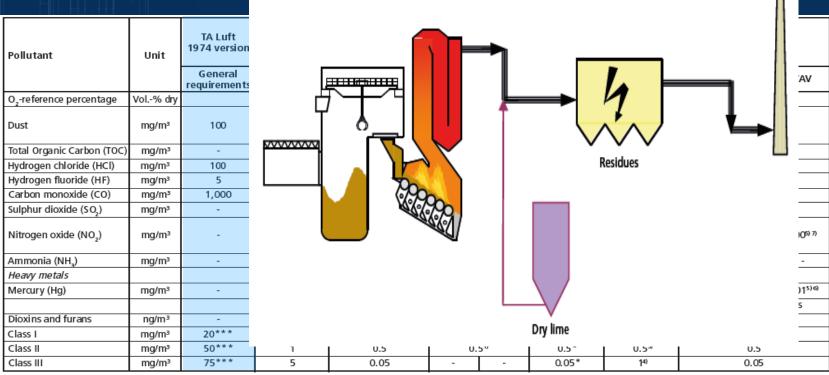
4 von 25

12th International Conference Waste to Energy 2021, Prague

The motivation of today's developments lies in addition to an efficient pollutant gas separation in topics such as

5 von 25

12th International Conference Waste to Energy 2021, Prague



Flue gas treatment yesterday and Today

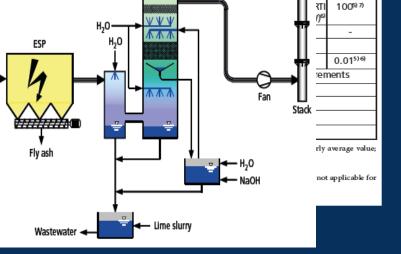
Development of flue gas treatment systems according the legal requirements using the example of Germany

The concentration data is based on standard temperature and pressure, dry state, for each oxygen reference value; DAV indicates daily average value; HHAV indicates half hourly average value; YAV indicates yearly average value; Heavy metals class I: Σ Cd/Tl; Heavy metals class II: Σ Sb, As, Pb, Cr, Co, Ni, Cu, Mn, V, Sn; Heavy metals class III: Σ As, benzopyrene, Cd, Co(aq), Cr(IV) * not applicable to use of coal, untreated wood only; ** combustion capacity > 6t/h or new facilities; *** nelated to the former classification

¹⁰ excluding Sn; ²⁰applicable to Tl (single substance); ²⁰ applicable to Pb, Co, Ni, Se, Te; ⁴⁰ applicable to Sb, Cr, CN, F, Cu, Mn, V, Sn; ⁵⁰ not applicable to use of existing plants with RTI < 50 MW; ⁴⁰ to be valid as of 2019; ²⁰ not applicable for existing plants; ⁴⁰ applicable to Mercury if the emission value is always < 20% of the requested emission value

RTI: Rated Thermal Input

Pollutant	Unit	TA Luft 1974 version	TA Luft 1986 version		ŀЧ	ESP		ime Fabric filt	.er	
		General requirements	General requirements							
O ₂ -reference percentage	Vol% dry	1	1				\vee		\checkmark \smile	-0-
Dust	mg/m³	100	30	Combus	tion/boiler				T-	Fan
Total Organic Carbon (TOC)	mg/m³	-	20	_				Recirculation		
Hydrogen chloride (HCl)	mg/m³	100	50	10	60	10	60	-	30	60
Hydrogen fluoride (HF)	mg/m³	5	2	1	4	1	4	-	3	
Carbon monoxide (CO)	mg/m³	1,000	100	50	100	50	100	150	150	
Sulphur dioxide (SO ₂)	mg/m³	-	100		Boiler	1		Ser	ubber	1
Nitrogen oxide (NO ₂)	mg/m³	-	500					NIZ NIZ		
Ammonia (NH ₃)	mg/m³	-	-							
Heavy metals							ESP	H ₂ O		
Mercury (Hg)	mg/m³	-	-	_			7			
				s		→ /				
Dioxins and furans	ng/m³	-	-				7 [<u>**</u>	
Class I	mg/m³	20***	0.2		K					Fan
Class II	mg/m³	50***	1	7		\sim	X			
Class III	mg/m ³	75***	5	- \&x	.7	* //			<u></u>	


Development of flue gas treatment systems according the legal

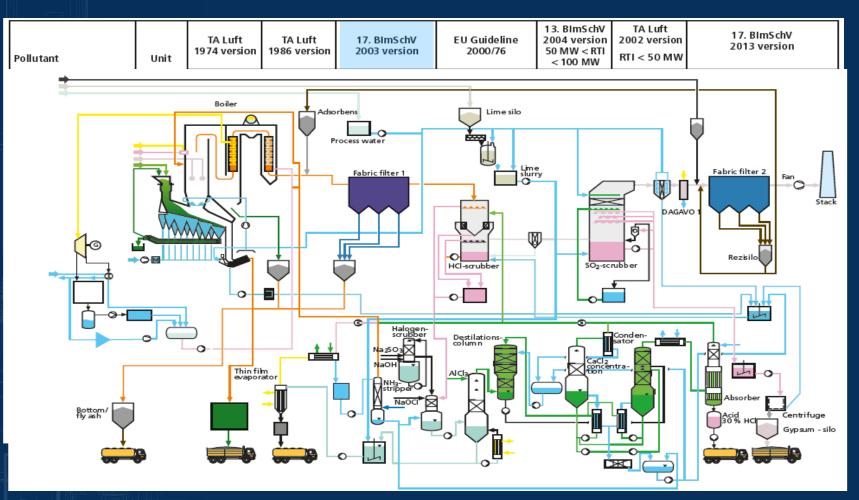
12th International Conference Waste to Energy 2021, Prague

requirements using the example of Germany

Heavy metals class I: Σ Cd/Tl; Heavy metals class II: Σ Sb, As, Pb, Cr, Co, Ni, Cu, Mn, V, Sn; F * not applicable to use of coal, untreated wood only; ** combustion capacity > 6t/h or new facil ¹⁾excluding Sn; ²⁾applicable to Tl (single substance); ³⁾ applicable to Pb, Co, Ni, Se, Te; ⁴⁾ applica

existing plants; 10 applicable to Mercury if the emission value is always < 20 % of the requested RTI: Rated Thermal Input

chV sion


Π Stack V

10

Ξ

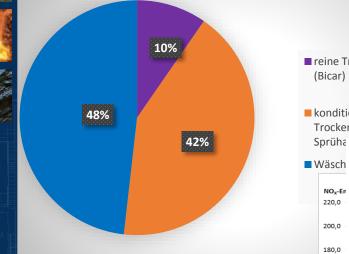
YAV

Entwicklung der Emissionsanforderungen am Beispiel Deutschland

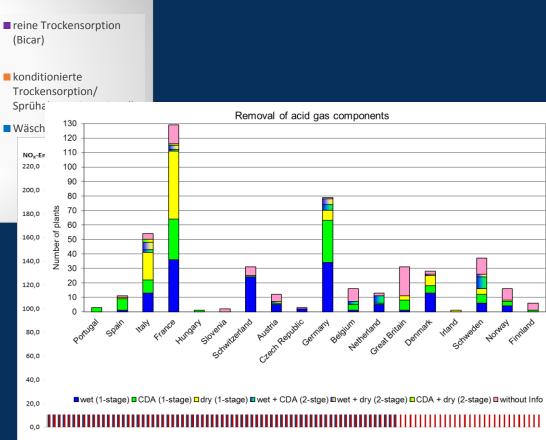
Significance of flue gas treatment

What was the experience with such complex plants?

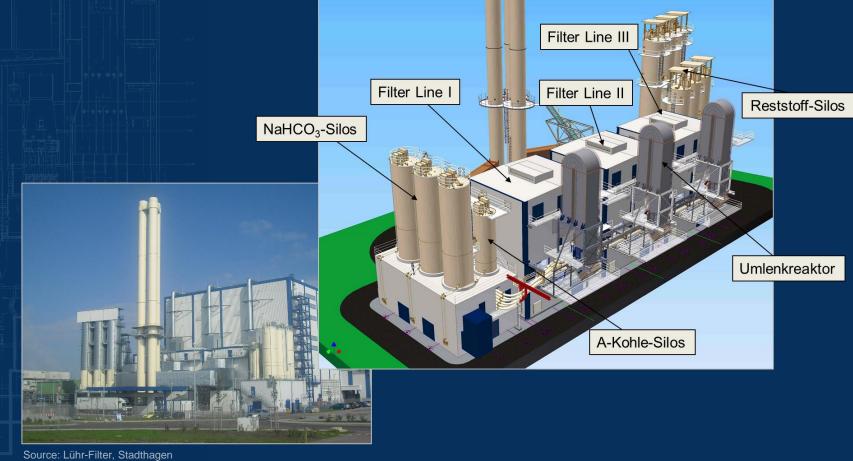
- there was no market for the by-products
- the energy expenditure and plant construction was very high


while these insights were gained, waste incineration underwent a metamorphosis from mere waste disposal to energy recovery from waste

From then on, energy efficiency was in the focus and became an important design criterion both for new and modified plants

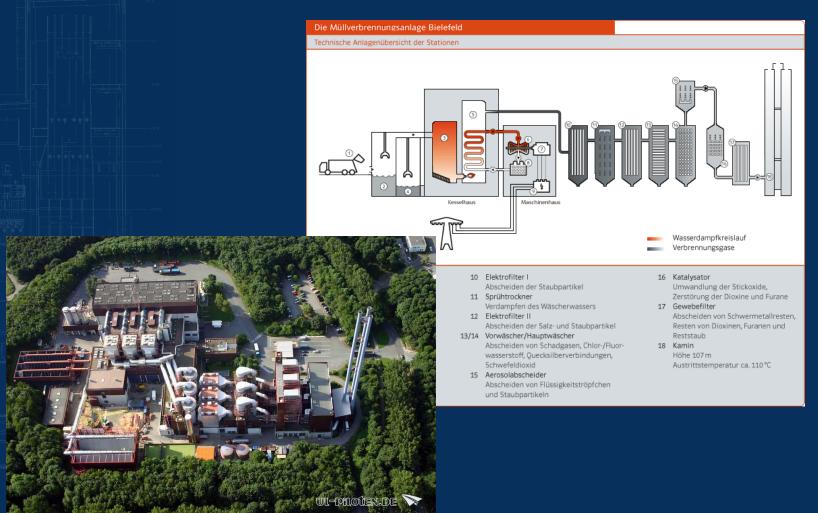


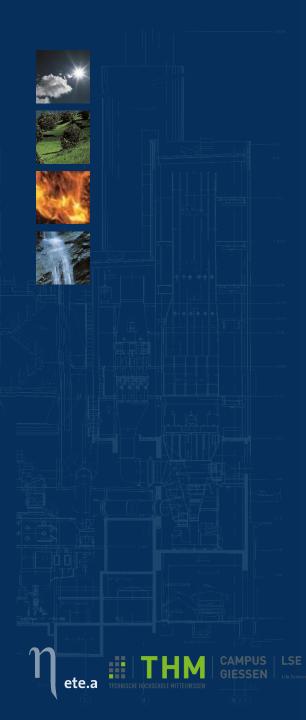
Source: ITAD, Düsseldorf


ete.a

Source: M. Treder: ITAD Emissionsbericht 2016, vorläufig, unveröffentlicht, Düsseldorf 10.09.2017

simple system SNCR – single-stage dry sorption NaHCO₃





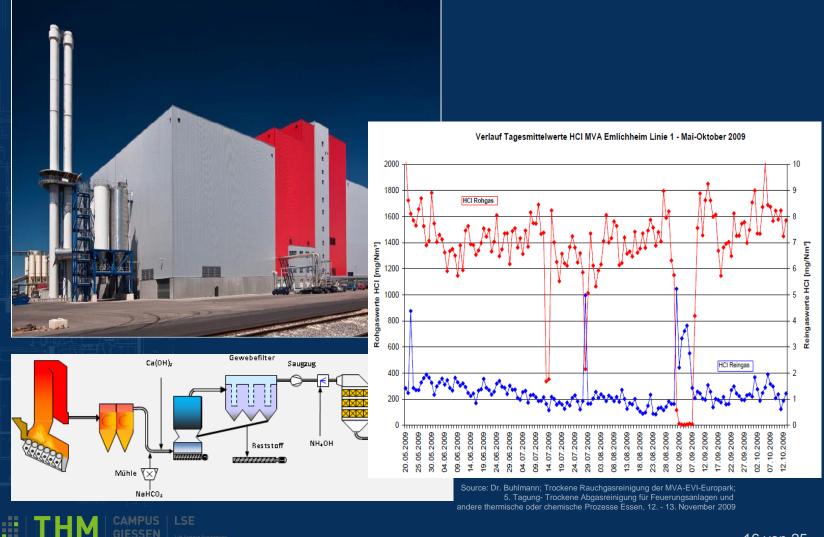
complex system

ESP – Spray dryer – ESP – 2-stage scrubber – Aerosol separator – SCR – Fabric-Ffilter

Challenges for flue gas treatment systems

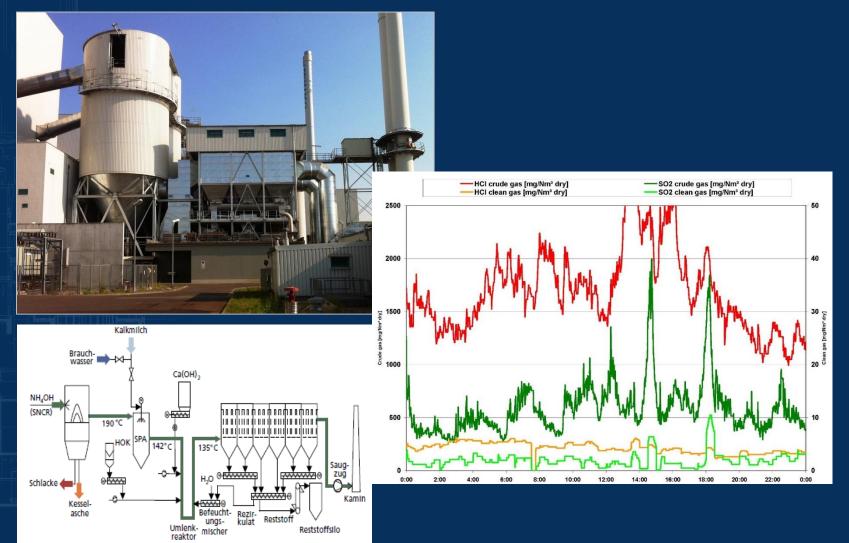
14 von 25

Parameter	Unit	17. BlmSchV ¹			Existing plants	New plants	Monitoring frequency	
		DAV	HAV	JAV	DAV	DAV		
dust	mg/m ³ _{STP, dry}	5	5 20 -		<2-	continuously		
HCI	mg/m ³ _{STP, dry}	10	60	-	<2-8	<2-6	continuously	
HF	mg/m ³ _{STP, dry}	1	4	-	<1	< 1	continuously (1)	
NO _x (SCR)	mg/m ³ _{STP, dry}	150	400	100	50-150 (²)	50-120	continuously	
SO _x als SO ₂	mg/m ³ _{STP, dry}	50	200	-	5-40	5-30	continuously	
Hg	mg/m ³ _{STP, dry}	0,03	0,05	0,01	<0,005	-0,02	continuously (3)	
					0,001-	Long term monitoring		
NH ₃	mg/m ³ _{STP, dry}	10	15	-	2-10 (4)	2-10	continuously	
N ₂ O	mg/m ³ _{STP, dry}				Wird nicht a	yearly (7) (8)		
со	mg/m ³ _{STP, dry}	50 100 -		-	10-8	continuously		
Cd + TI	mg/m ³ _{STP, dry}	mg/m ³ _{STP, dry} 0,05		0,005-	every 6 month			
∑Sb+As+Pb+Cr+Co+ Cu+Mn+Ni+V+(Sn)	mg/m ³ _{STP, dry}	_{ry} 0,5			0,01-			
∑As+Benzo(a)pyren+ Cd+Co+Cr	mg/m ³ _{STP, dry}	.TP, dry 0,05		-	yearly			
PCDD/F (*)	ng _{I-TEQ} /m³	_			< 0,01-0,06	< 0,01-0,04	every 6 month	
	- STP dry				< 0,01-0,08	< 0,01-0,06	monthly (⁵)	
PCDD/F + Dioxin-like	ng _{WHO-TEQ}	0,1			< 0,01-0,08	< 0,01-0,06	every 6 month(⁶)	
PCBs (*)	/m ³ _{STP dry}				< 0,01-0,1	< 0,01-0,08	monthly (⁵) (⁶)	
TVOC / C _{ges.}	$mg/m^3 _{STP,dry}$	10 20 -		-	< 3-	continuously		


* the equivalence factors are used either according to I-TEQ or WHO-TEQ,

17. BImSchV (page 21) according to WHO-TEF 2005

12th International Conference Waste to Energy 2021, Prague


Example of existing plant – MVA EVI-Europark

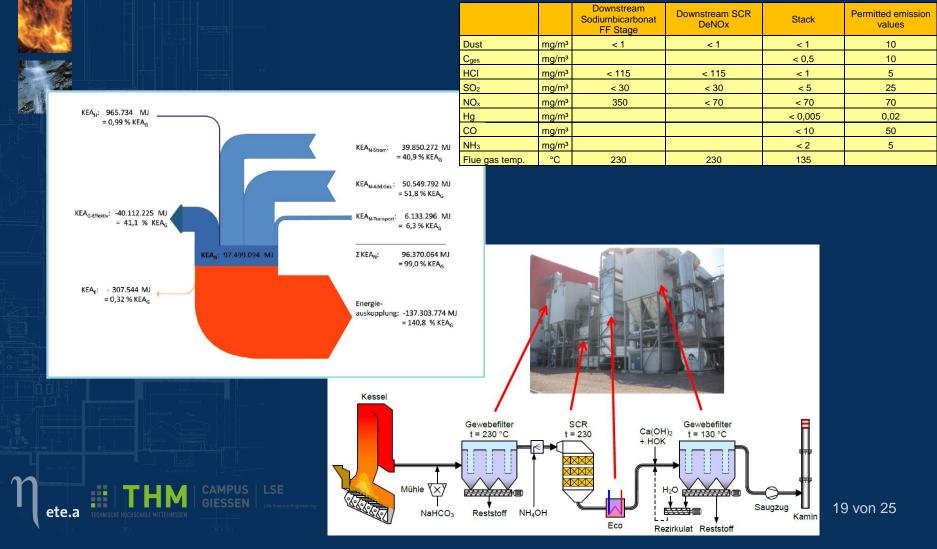
12th International Conference Waste to Energy 2021, Prague

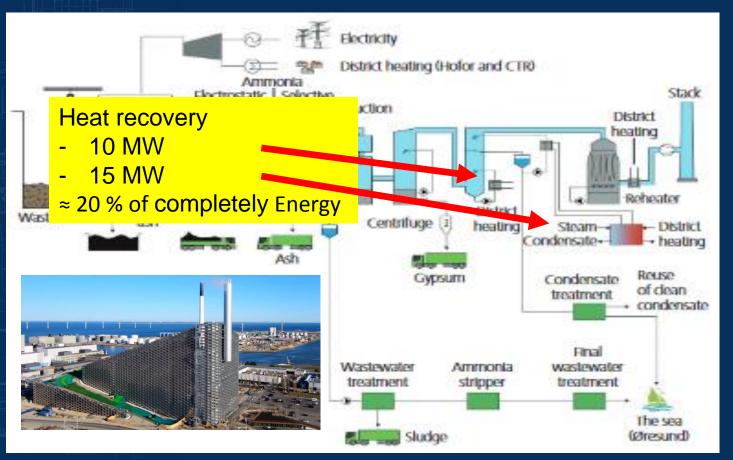
Example of existing plant – MHKW Rothensee

Source: R. Margraf; Dry, Semi-dry or Wet– Which System Fits Best Depending on the Overall Conditions?, IRRC, Vienna 2017

Challenges for flue gas treatment systems in the future

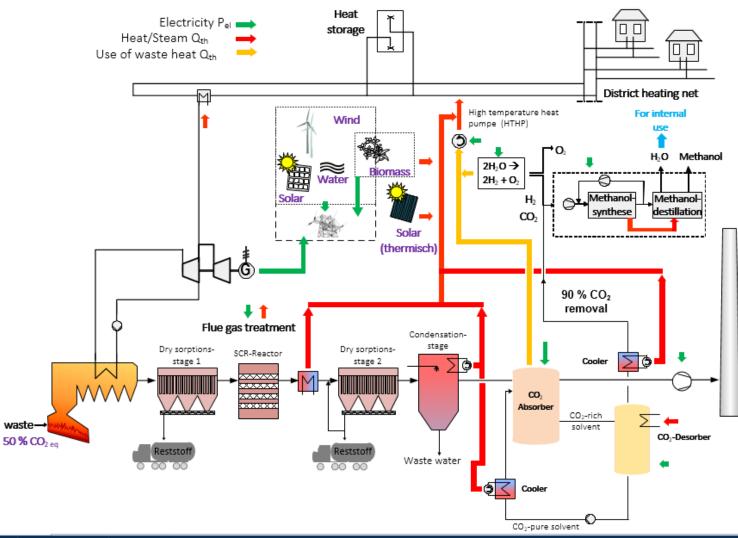
Challenges for flue gas cleaning will continue to be high pollutant removal efficiency and very high efficiency in the use of energy and consumables (minimum consumption of resources)


The present-day flue gas cleaning systems are unique in design and their specific configuration often reflects the development of the emission limits over time.


Sankey-Diagram CED-complete

(CED_U for HCI-raw gas 1.300 mg/m³; SO₂-raw gas 500 mg/m³); 8000 Oh

Waste to energy plant "Amager Bakke" in Copenhagen, Denmark



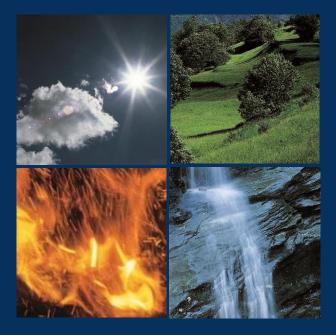
Source: Hulgaard, T.; Søndergaard, I.: Integrating waste-to-energy in Copenhagen, Denmark. Civil Engineering, Volume 171, Issue CE5, Pages 3-10

12th International Conference Waste to Energy 2021, Prague

Optimized flue gas treatment system in adaptation to the future energy market

Conclusion

- The current level of emissions from flue gas purification systems downstream of waste incineration systems partly borders on the confidence levels of the existing measurement technology, so that there is fundamental optimization potential here too, but this does not represent the ultimate challenges.
- In addition to efficient pollutant gas separation, the future challenges lie in topics such as
 - Energy efficiency,
 - Minimization of the input materials up to
 - for recovering valuable substances from flue gas cleaning (e.g. CO₂).



Conclusion

- In addition, the location plays an important role, especially for new systems, so that synergies can be used, which must be taken into account when planning the predicted mega-cities.
- It will not be a question of developing completely new systems or processes, but rather the intelligent combination of existing processes and the use of synergies.

Thank you for your attention!

25 von 25