

Significance and challenges for flue gas treatment systems in waste incineration

Rudi Karpf

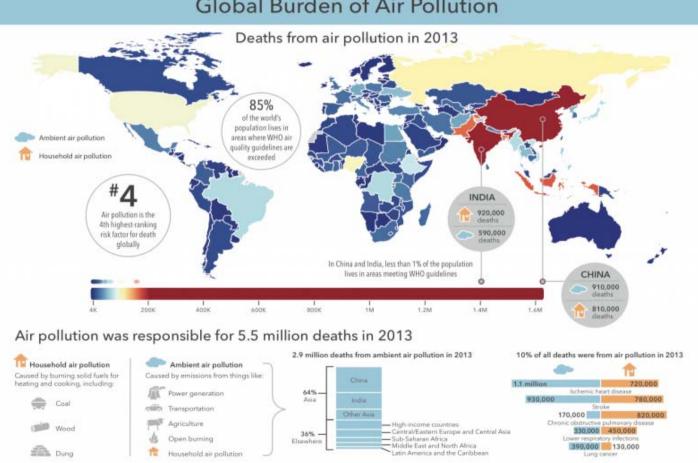
THM Technische Hochschule Mittelhessen, Gießen ete.a Ingenieurgesellschaft mbH

TOTeM 46 – November 21-22, 2019 | Pisa Italy

Source: © picture-alliance/AP

Introduction

Motivation and Background


ĦŦ

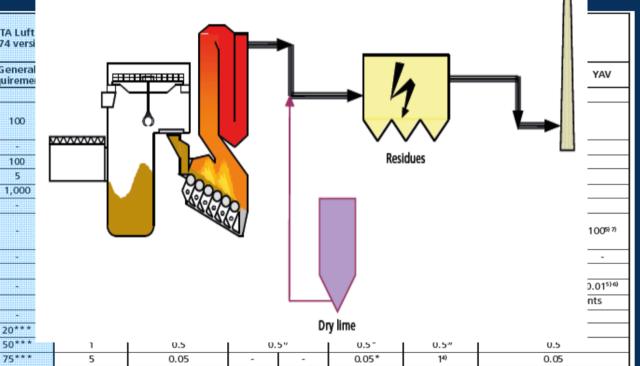
TECHNISCHE HOCHSCHULE MITTELHESSEN

ete.a

TOTeM 46 – November 21-22, 2019 | Pisa Italy

Significance of flue gas treatment

Global Burden of Air Pollution

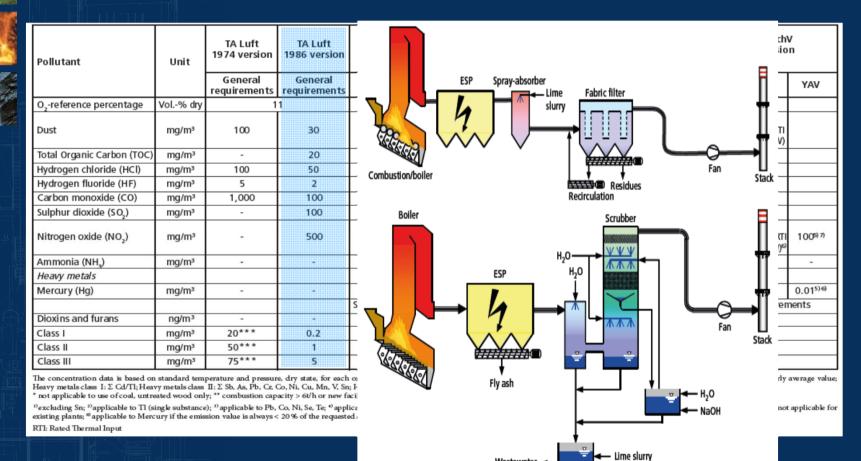

Source: WHO Global Burden of Disease Study 2013

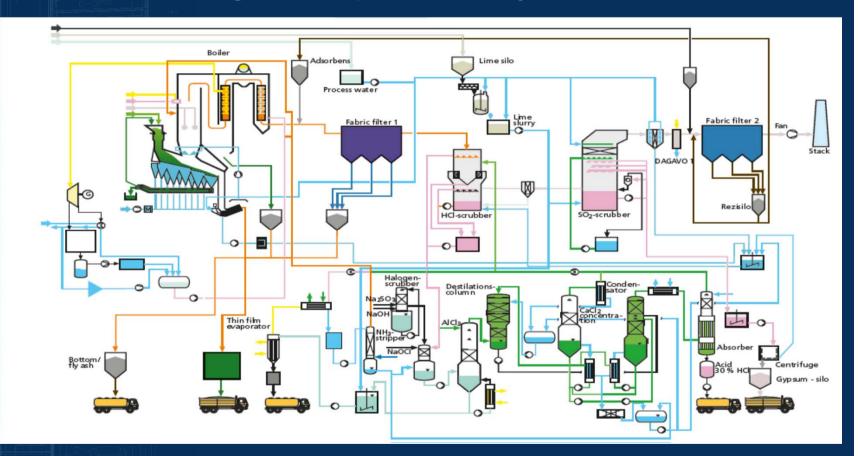
Development of flue gas treatment systems according the legal requirements using the example of Germany

	Pollutant	Unit	TA L 1974 ve
			Gene require
	O ₂ -reference percentage	Vol% dry	
	Dust	mg/m³	10
	Total Organic Carbon (TOC)	mg/m³	-
	Hydrogen chloride (HCl)	mg/m³	100
	Hydrogen fluoride (HF)	mg/m³	5
	Carbon monoxide (CO)	mg/m ³	1,00
	Sulphur dioxide (SO ₂)	mg/m³	-
	Nitrogen oxide (NO ₂)	mg/m³	-
R	Ammonia (NH ₃)	mg/m³	-
	Heavy metals		
y.	Mercury (Hg)	mg/m³	-
-			
7	Dioxins and furans	ng/m³	-
2	Class I	mg/m³	20**
	Class II	mg/m³	50*
	Class III	mg/m³	75*

The concentration data is based on standard temperature and pressure, dry state, for each oxygen reference value; DAV indicates daily average value; HHAV indicates half hourly average value; YAV indicates yearly average value; Heavy metals class I: Σ Cd/Tl; Heavy metals class II: Σ Sb, As, Pb, Cr, Co, Ni, Cu, Mn, V, Sn; Heavy metals class III: Σ As, benzopyrene, Cd, Co(aq), Cr(IV) * not applicable to use of coal, untreated wood only; ** combustion capacity > 6t/h or new facilities; *** elated to the former classification

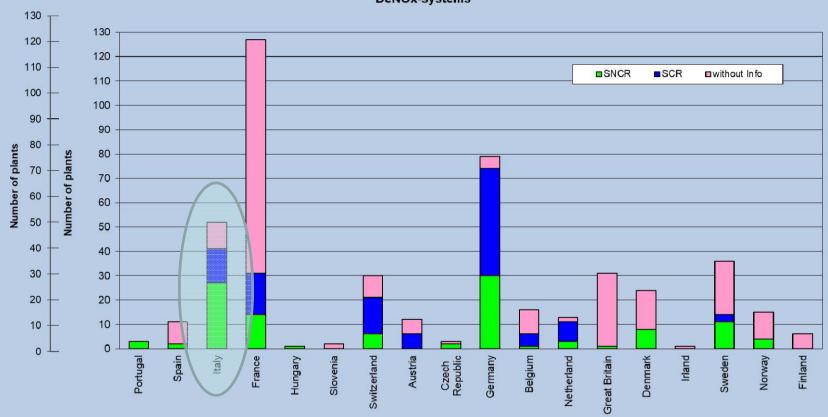
¹⁾excluding Sn; ²⁾applicable to Tl (single substance); ³⁾applicable to Pb, Co, Ni, Se, Te; ⁴⁾applicable to Sb, Cr, CN, F, Cu, Mn, V, Sn; ⁵⁾ not applicable to use of existing plants with RTI < 50 MW; ⁶⁰ to be valid as of 2019; ⁷⁾ not applicable for existing plants; ⁸⁰ applicable to Mercury if the emission value is always < 20 % of the requested emission value


RTI: Rated Thermal Input


Development of flue gas treatment systems according the legal requirements using the example of Germany

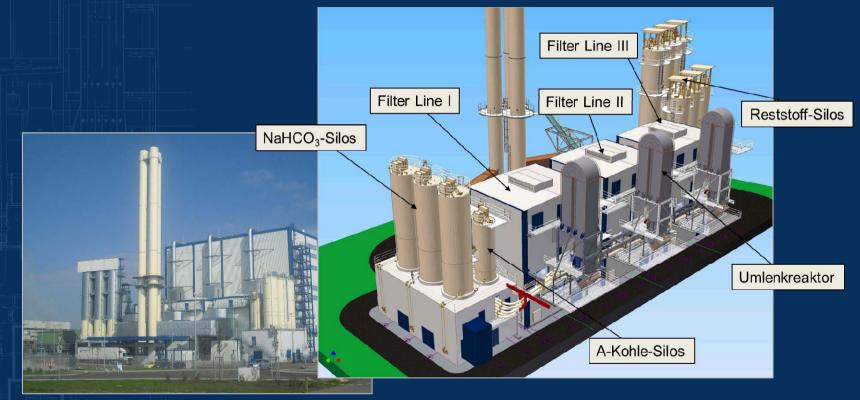
Wastewater

Development of flue gas treatment systems according the legal requirements using the example of Germany



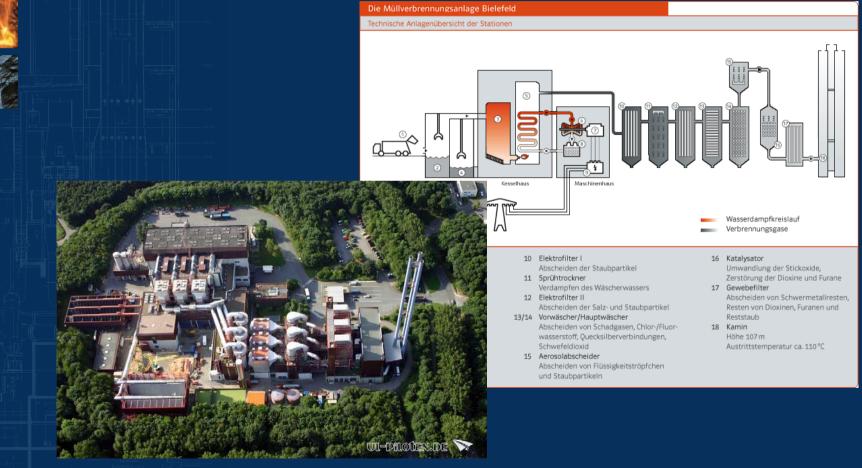
Separation of acid gases based on German wte plants

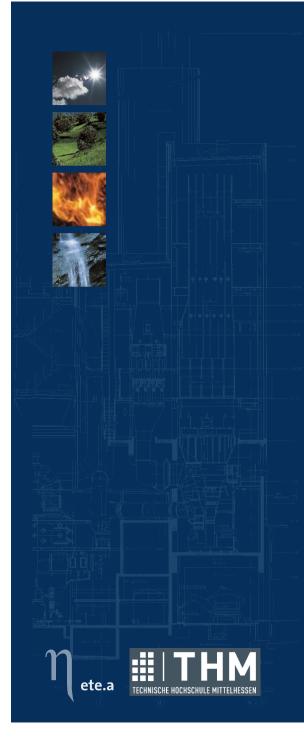
DeNOx-systems



Source: M. Treder: ITAD Emissionsbericht 2016, vorläufig, unveröffentlicht, Düsseldorf 10.09.2017

Simple plant construction SNCR – one-stage dry sorption with NaHCO₃


Source: Lühr-Filter, Stadthagen

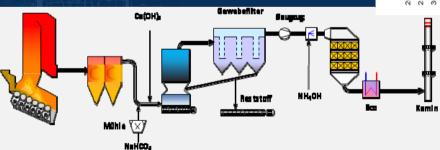

Complex plant construction

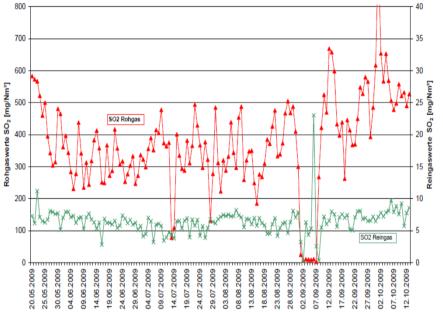
ESP – Spray-dryer – ESP – 2-stage Scrubber – Aerosol-separator – SCR – Fabric filter

Source: Interargem, Bielefeld

challenges at emission control systems

Revision BREF WI


	Process Parameter	Unit	Emission limits of 17. BlmSchV		BAT AEL's Existing plants	BAT AEL's New plants	Monitoring frequency	
			DAV	HAV	JAV	DAV	DAV	
	Dust	mg/m ³ , _{i.N.tr.}	5	20	-	<2-5		continuous
	HCI	mg/m ³ , _{i.N.tr.}	10	60	-	<2-8	<2-6	continuous
	HF	mg/m ³ , _{i.N.tr.}	1	4	-	<1	< 1	continuous
	NO _x (SCR)	mg/m ³ , _{i.N.tr.}	150	400	100	50-150	50-120	continuous
	SO _x als SO ₂	mg/m ³ , _{i.N.tr.}	50	200	-	5-40	5-30	continuous
	Hg	mg/m ³ , _{i.N.tr.}	0,03	0,05	0,01	<0,005-0,02		continuous
	пу					0,001	-0,01	Long-term monitoring
	NH ₃	mg/m ³ , _{i.N.tr.}	10	15	-	2-10	2-10	continuous
	N ₂ O					No value		yearly
	CO	mg/m ³ , _{i.N.tr.}	50	100	-	10-50		continuous
	Cd + Tl	mg/m ³ , _{i.N.tr.}		0,05		0,005-0,02		every 6 Month
	∑Sb+As+Pb+Cr+Co+ Cu+Mn+Ni+V+(Sn)	mg/m ³ , _{i.N.tr.}	0,5		0,01-0,3			
	∑As+Benzo(a)pyren+ Cd+Co+Cr	mg/m ³ , _{i.N.tr.}	0,05		-		yearly	
	PCDD/F (*)	ng _{I-TEQ} /m³,	-		< 0,01-0,06	< 0,01-0,04	every 6 Month	
		i.N.tr.			< 0,01-0,08	< 0,01-0,06	monthly	
	PCDD/F + Dioxin like	ng _{WHO-TEQ}				< 0,01-0,08	< 0,01-0,06	every 6 Month
e per la	PCBs	/m ³ , _{i.N.tr.}	0,1			< 0,01-0,1	< 0,01-0,08	monthly
	TVOC / C _{ges.}	mg/m ³ , _{i.N.tr}	10	20	-	< 3	-10	continuous



Waste incineration plant EVI-Europark (Germany)

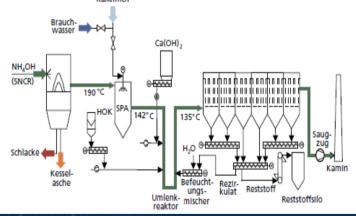
Verlauf Tagesmittelwerte SO₂ - MVA Emlichheim Linie 1 - Mai-Oktober 2009

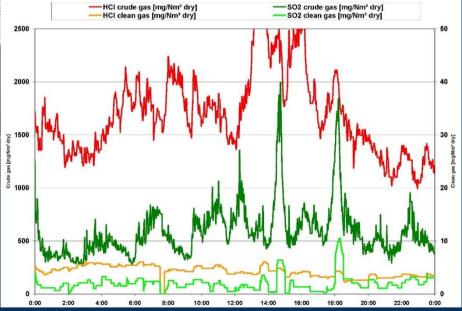
Source: Dr. Buhlmann; Trockene Rauchgasreinigung der MVA-EVI-Europark; 5. Tagung- Trockene Abgasreinigung für Feuerungsanlagen und andere thermische oder chemische Prozesse Essen, 12. - 13. November 2009

ete.a

Ħ

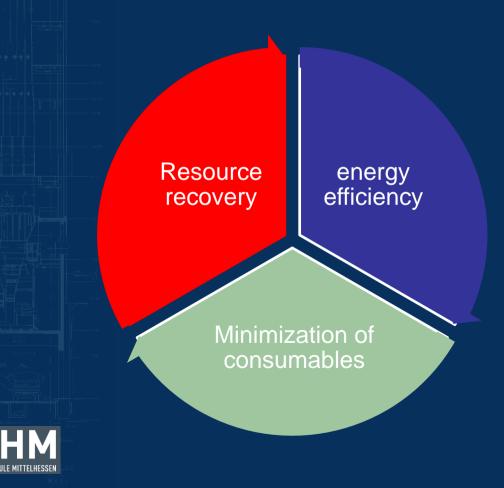
TECHNISCHE HOCHSCHULE MITTELHESSEN


ĦŦ


TECHNISCHE HOCHSCHULE MITTELHESSEN

ete.a

Source: R. Margraf; Dry, Semi-dry or Wet– Which System Fits Best Depending on the Overall Conditions?, IRRC, Vienna 2017

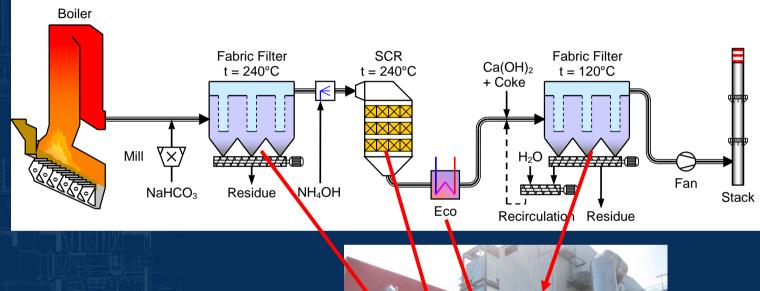


ete.a

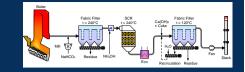
The motivation of today's developments lies not only in efficient emission of harmful gases in topics such as

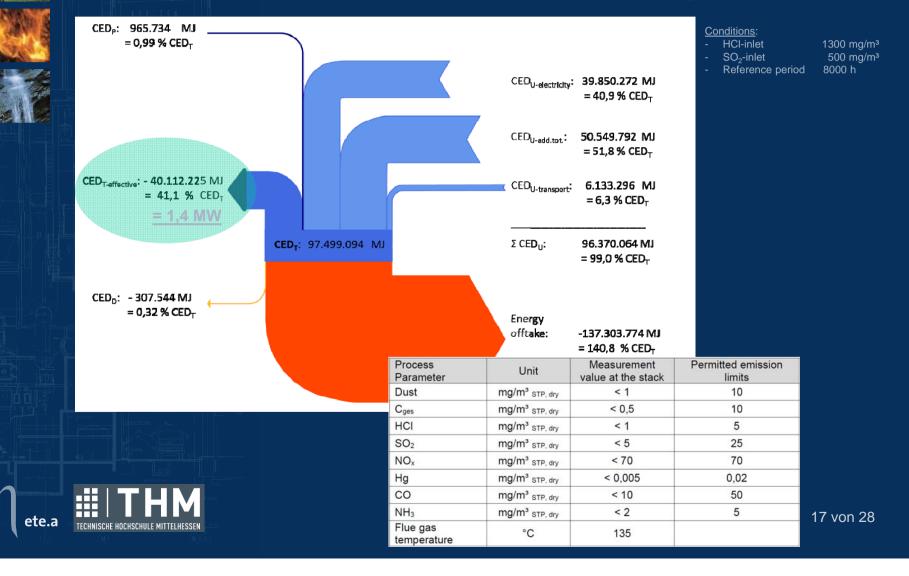
A very comprehensive and detailed study on the net emissions balance as a function of energy expenditure shows that the energy expenditure for a multistage flue gas treatment system with minimum emissions is not necessarily higher than that of single-stage systems!

Modern-day and future know-how regarding the design of efficient plants will not necessarily imply the development of new processes, but rather place a focus on the intelligent combination and configuration of proven process stages



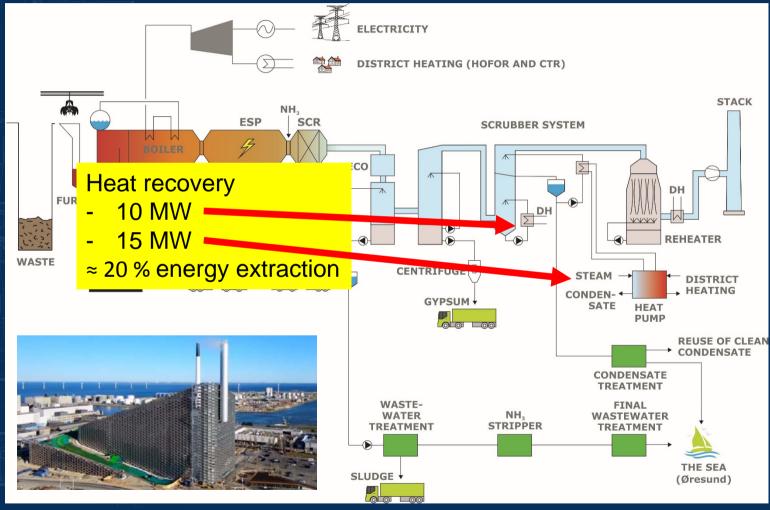
Challenges for flue gas treatment systems in the future


One example of this is the Delfzijl waste incineration facility in the Netherlands.



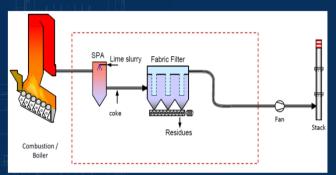
Challenges for flue gas treatment systems in the future

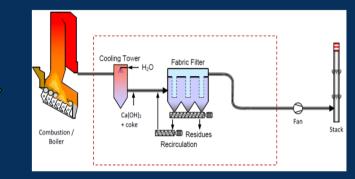
In order to compare different systems the cumulative energy demand was used



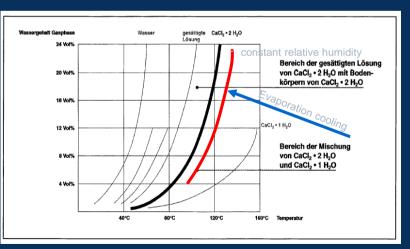
ete.a

Wte plant Copenhagen - Amanger


Source: Hulgaard, T.; Søndergaard, I.: Integrating waste-to-energy in Copenhagen, Denmark. Civil Engineering, Volume 171, Issue CE5, Pages 3-10



ete.a


Substitution of a spray absorber Change from lime slurry

a pure cooling tower dry lime injection

Lower outlet temperatures with the same tower by a longer residence time for pure water droplets

to

to

Substitution of spray absorption by a pure water injection (cooling tower) - comparison of operation costs

- flue gas stream
- HCI
- SO₂
- HF
- $-H_2O$

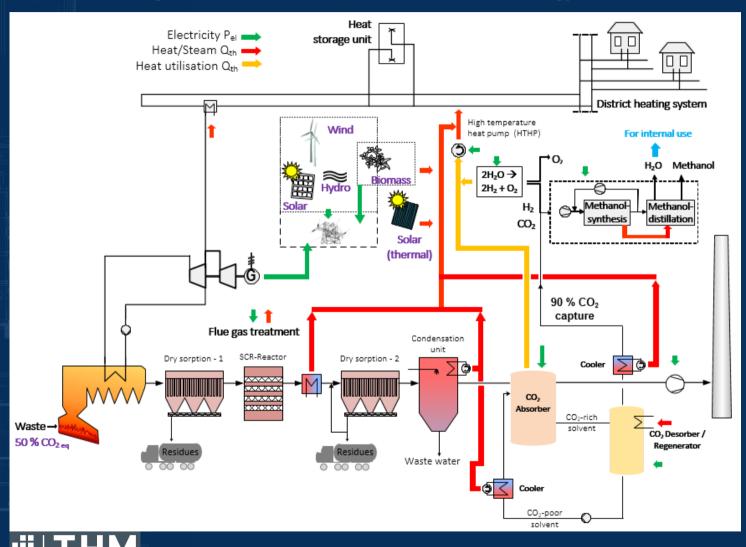
100.000 m³/h st. w. 1.000 mg/m³ 300 mg/m³ 20 mg/m³ 15 Vol.%

Substitution of spray absorption by a pure water injection (cooling tower) - comparison of operation costs

Operation costs	unit	cond. dry absorption	Spray absorption
Lignite coke	€/h	3,048	3,048
Active coke	€/h	0	0
lime Ca(OH) ₂	€/h	21,15	26,741
lime CaO	€/h		10,71
water	€/h	2,49	2,21
Compressed air (8 bar)	€/h	54,4	54,4
Electrical energy	€/h	16,24	18,56
residues	€/h	61,56	73,32
Sum of operation costs	€/h	158,89	188,99
Difference	€/h	0	30,11
Differenz	%	0,00	18,95
Annual costs at 8000 h/a	€/a	1.271.084	1.511.928
Difference	€/a	-	240.844

Challenges for flue gas treatment systems in the future

Apart from energy efficiency, recent discussions indicate the imminent renaissance of recovery of valuable by-products from the flue gas – this time, however, not in the form of producing materials such as gypsum or hydrochloric acid, but in the form of feeding the combustion product CO_2 back into the carbon cycle, for instance in the form of methanol!



ete.a

TECHNISCHE HOCHSCHULE MITTELHESSEN

TOTeM 46 – November 21-22, 2019 | Pisa Italy

Optimized flue gas treatment in adaptation to the future energy market

Challenges for flue gas treatment systems in the future

My appeal is ...

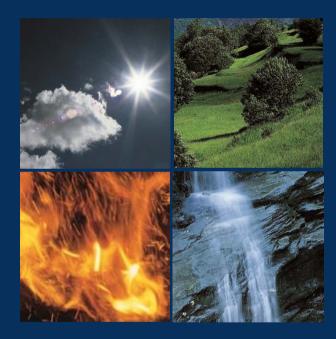
.. as regards the future selection of sites for new plants, this implies that plants should be built at sites where a suitable infrastructure including energy sinks exist!

Summary

Summary

The current emission level of flue gas treatment plants behind waste incineration plants limits to the areas of trust of the existing measurement technology, so that there is also basically potential for optimization, but not the ultimate challenges.

- The future challenges lie in addition to an efficient separation of harmful gases in topics such as
 - Energy efficiency,
 - Minimization of consumables
 - Resource recovery.



Summary

- In addition, especially for new plants, the location plays an essential role, so that synergies can be used, which must be taken into account when planning the prophesied mega-cities.
- It will not be important to develop completely new systems or processes, but rather the intelligent combination of existing procedures and the use of synergies.

Thank you!

